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ABSTRACT 

The nuclear power industry is data-rich and these data introduce a 

tremendous potential for automation and cost savings. On the other hand, 

research organizations, among other stakeholders, have very capable methods 

and solutions often developed using simulated or synthetic data due to the lack of 

real data. One cause of this disconnect is data privacy. Data privacy is of 

paramount importance in all industries, but especially the nuclear industry due to 

the risks associated with the malicious use of data (e.g., loss of competitive edge, 

reverse-engineering of proprietary systems, national security concerns). 

However, for the data to be usable by research organizations, its inference 

characteristics need to be maintained. This challenge motivated the data 

obfuscation method called deceptive infusion of data (DIOD). DIOD is a novel 

data-masking paradigm that specifically addresses the above concerns with 

existing data-masking techniques. Fundamentally, DIOD ensures that the 

information content of the masked and the proprietary data are identical through 

the information-theoretic guarantee of mutual information, while also 

disassociating the identity of the masked data from the proprietary system. This 

one-way (i.e., masking of data) operation is irreversible and allows the analyst to 

arrive at identical conclusions using the masked data without permitting 

successful reverse-engineering.  

In this effort, DIOD is applied and demonstrated using two use cases for 

regression. One use case targeted a physics-based model generated from a 

simple, noise-free point-kinetics (PK) model with one delayed neutron group; the 

second targeted a process that resembles an actual nuclear power plant process.  

The first use case was applied to three scenarios in which power was used to 

predict the PK parameters. Those parameters were ñwell-posed,ò ñill -posed,ò and 

ñreduced ill-posed.ò All three scenarios were concealed by electrical load data. 

The results validated that the DIOD procedure preserves mutual information 

between the original and masked data. The second use case used a red team-blue 

team exercise where the blue team created process data from a simulation with 

anomalies included. The blue team masked the data with another process data set 

using DIOD and shared it with the red team. The red team attempted to identify 

anomalies in the masked data, and to reverse-engineer the masked data to 

decipher the identity of the proprietary system. The anomalies were discoverable, 

but the identity of the system was not revealed, indicating a successful 

demonstration of DIOD use. 
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A NOVEL DATA OBFUSCATION METHOD TO SHARE 
NUCLEAR DATA  FOR MACHINE LEARNING 

APPLICATION   

1. INTRODUCTION 

The nuclear power industry has been operating for decades and storing a huge amount of useful data 

for automation of various activities at nuclear power plants (NPPs). On the other hand, research 

organizations, among other stakeholders, have very capable methods and solutions often developed using 

simulated or synthetic data due to the lack of real data. This gap motivated the development of a data 

warehouse to serve as a data hub for NPPs, vendors, research organizations (e.g., universities), standards 

committees and professional societies, compliance organizations, and various other stakeholders 

(Figure 1). The data warehouse will host a library of proven methods for NPPs to use and easily access 

(Figure 2). This would enable NPPs to validate the developed methods on the data warehouseôs servers, 

then download the methodsô algorithms and code for local use. The data warehouse would also enable 

data sharing, including allowing the data to be transferred to a user once the NPP has issued specific 

authorization or the data have been sanitized (i.e., obfuscated).  

Another benefit of the data warehouse is that it enables data integration. Given artificial intelligence 

and machine learning (AI/ML) has proven very useful to the nuclear power industry, data integration is 

considered a key enabler for AI/ML. The potential to integrate and leverage data across the entire industry 

via a data warehouse would afford multiple benefits to AI/ML development, including increased 

statistical power, higher frequencies of low base-rate behaviors, as well as enhanced verification.  

The specific data privacy challenge associated with data sharing for integration in nuclear energy 

required research into methods of data obfuscation. Data privacy is of paramount importance in all 

industries, but especially the nuclear industry due to the risks associated with the malicious use of data 

(e.g., loss of competitive edge, reverse-engineering of proprietary systems, national security concerns). 

The concern of data privacy has been investigated for decades, starting with data-masking techniques 

such as substitution, shuffling, encryption, etc., for data warehouses, and more recently, differential 

privacy and fully homomorphic encryption [1ï3].  

The methods suited for data warehouses are generally not applicable to industrial data analysis and/or 

do not preserve the physical correlations necessary for AI/ML tools to be effective. For example, omitting 

all but the last four digits of social security numbers is not applicable to time-series data from the sensor 

of an industrial control system. Traditional encryption with decryption keys is intended to protect the data 

in transit to an analyst; however, it does not protect the data from the analysts themselves, instead relying 

on administrative red tape, non-disclosure agreements, etc., to prevent the analyst from reverse-

engineering the data and publicizing the findings. Homomorphic encryption, while promising and 

allowing for the mathematical manipulation of data directly in the encrypted form, is in its infancy and is 

limited in application, typically reduced to multiplication and addition operations in a constrained 

analytical environment [2]. Furthermore, the massive overheads in encryption render it unscalable to the 

size of process data commonly encountered in industry. Last, differential privacy relies on the privacy-

utility tradeoff by injecting artificial noise (typically Laplacian) into the data collected to provide 

plausible deniability to the source while preserving group statistics [3]. However, the effect of the injected 

noise on industrial data is typically detrimental to AI/ML algorithms as it degrades the quality of the data, 

and injecting vast amounts of noise to obscure trends and patterns renders the data unusable.  
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Figure 1. A data warehouse enables experience and methods to be transferred among NPPs and outside 

organizations, allowing the establishment of industry-wide solutions. 

 

Figure 2. Data obfuscation is a potential solution for enabling data sharing among plants and research 

organizations. 

In this effort, a new data obfuscation method is created. Deceptive infusion of data (DIOD) is a novel 

data-masking paradigm which specifically addresses the above concerns with existing data-masking 

techniques. Fundamentally, DIOD ensures that the information content of the masked and the proprietary 

data are identical through the information-theoretic guarantee of mutual information, while also 

disassociating the identity of the masked data from the proprietary system. Mutual information is 

employed to validate the claim of identical inference here. This one-way (i.e., masking of data) operation 
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is irreversible and allows the analyst to arrive at identical conclusions using the masked data without 

permitting successful reverse-engineering. Also, DIOD addresses the computational burden on data-rich 

industrial systems by introducing a highly scalable implementation after an initial one-time reduced-order 

modeling cost that is typically performed by domain experts for most industrial systems. 

The remainder of the report is organized as follows: Section 2 presents the DIOD method. Section 3 

consists of two use cases to demonstrate DIOD for regression. One use case targeted a physics-based 

model, the second targeted a process that resembles an actual NPP process.  The preservation of inference 

properties using DIOD are demonstrated in both use cases. The second use case outlines a red team-blue 

team exercise where the blue team is composed of experimentalists generating proprietary data with 

anomalies from a proprietary system and performing the DIOD procedure, while the red team is 

composed of analysts that are tasked with identifying anomalies in the masked data and attempting to 

reverse-engineer the masked data to decipher the identity of the proprietary system.  
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2. METHOD 

DIOD decomposes the target data into two sets of metadata: fundamental metadata, the metadata 

relating to the proprietary system identity; and inference metadata, the metadata relevant for AI/ML 

applications. The fundamental metadata are typically composed of the underlying differential equations, 

system geometry, material properties, etc., that are fixed across a set of experiments, whereas the 

inference metadata are composed of the operational regimes, varying parameters of interest, and temporal 

and/or sensor correlations that depend on the target AI/ML application. This decomposition is given by:  

ώ ὼȟ   ὼ‰         ρ 

Here, ώ ὼȟ is the proprietary system data approximated as the sum of ὶ dyads, where  ὼ is the 

proprietary system fundamental metadata corresponding to a parameter ὼ and ‰  is the proprietary 

system inference metadata corresponding to some process parameter . 

The goal of the DIOD methodology is to replace the fundamental metadata of the proprietary system 

with that of the fundamental metadata of another generic system,  ὼᴂ, to disassociate the identity of 

the data from the proprietary system, while preserving the inference metadata. This is achieved by 

decomposing the generic system to extract the generic system fundamental metadata  ὼᴂ: 

ώ ὼᴂȟᴂ   ὼᴂ‰ ᴂ        ς 

and using it through the so-called concealment kernel Ὧὼȟὼ:  

Ὧὼȟὼ  ὼᴂ ᶻὼ σ 

ώ ὼȟ Ὧὼȟὼ ώz ὼȟ ḯ  ὼᴂ ᶻὼ ὼ‰   ὼᴂ‰    τ 

ᶻ is the conjugate of  and is used to eliminate the dependence on ὼ in ώ  (i.e., remove the 

fundamental metadata). Given that the masked data ώ  only possess the fundamental metadata of the 

generic system and the transformed inference metadata of the proprietary system, it is impossible to guess 

the identity of the source since infinite possibilities exist. For instance, if a proprietary first-order system 

of equations (such as a point-kinetics [PK] model) is transformed into a generic system of equations 

(spring-mass-damper model), any reverse-engineering efforts would only inform the adversary of the 

spring-mass-damper model, providing no clues to the first-order or the stiff nature of the simple PK 

model. Furthermore, the invariance of mutual information to invertible transformations and extraneous 

metadata implies that transformations on the inference metadata and discarding of irrelevant inference 

metadata is possible to further fine-tune the masking procedure to the target AI/ML application. In 

summary, Eq. 1ï4 show that any reverse-engineering efforts to identify the system are expected to lead to 

the generic system fundamental metadata. However, any inference efforts will have identical performance 

on both the proprietary and the masked data since they carry the same information content. 

Additionally, Eq. 1ï4 are highly scalable requiring an initial one-time cost to develop a library of 

concealment operators corresponding to the fundamental metadata of various proprietary and generic 

systems. Multiple data sets carrying the same information content may then be generated through 

repeated applications of Eq. 4, fusing the inference metadata (or transformations of it) with the 
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fundamental metadata of multiple generic systems. This effectively creates a benchmark data set where 

the masked data consist of the same information but appear to have come from various systems. In theory, 

an ideal AI/ML algorithm is expected to perform identically on all the sets of data due to the identical 

information content. A detailed discussion of the method can be found in [4]. 
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3. USE CASES 

This section presents two use cases to demonstrate the use of DIOD to regression problems, which are 

commonly used for time-series type of data. In the first use case, PK equations are used as a physics-

based experiment in which the data need to be obfuscated. In the second use case, process data from a 

simulated process that represent real nuclear power plant data are used. In the first use case, the 

obfuscation is performed using concealment operators that are from a totally different system. In the 

second use case, another process (i.e., similar type of data) is used to obfuscate the original process. In 

both cases, the aim is to establish a relationship between the observations of a system or process and its 

input parameters, assuming the data owner is reluctant to share the observations directly for fears of 

misuse. To circumvent this issue, the owner of the data provides the masked version of the data using the 

DIOD procedure, and the true relationship can be identified by reversing the operations known only to the 

owner. 

The process use case utilizes a red team-blue team setup wherein the blue team generates the sensitive 

and generic data, injects anomalies into the proprietary system, and performs the DIOD procedure. The 

masked data are then handed to the red team, which is tasked with detecting the various anomalies while 

simultaneously attempting to reverse-engineer the masked data (i.e., recover the identity of the proprietary 

system and potentially the sensitive data themselves). It is assumed that the red team is aware of the 

DIOD procedure and its mathematical framework for the target AI/ML application without 

knowing the specific transformations used. 

3.1 Physics Use Case  

3.1.1 Description  of Physics Use Case  

For this experiment, the proprietary system data are generated from a simplified, noise-free PK model 

with one delayed neutron group [5, 6] as shown below in Eq. 5ï6. 

Ὠὖ

Ὠὸ

” 

Ώ
ὖὸ ‗ὅὸ 

υ 

Ὠὅ

Ὠὸ



ɤ
ὖὸ ‗ὅὸ φ 

Here, ” is the initial reactivity inserted into the system,  is the total fraction of delayed neutrons, ɤ is the 

mean lifetime of prompt neutrons, ‗ is the one-group average half-life of neutron precursors, and each 

sample of ὖ is aggregated to form the proprietary system data. For this experiment, each parameter is 

sampled from a uniformly random distribution with mean values shown in Table 1, and an uncertainty of 

10% for each parameter. A sample power profile is generated below in Figure 3.  

Table 1. Parameter values for generated PK data. 

Parameter ⱬ ♫  (seconds) ⱦ (seconds) 

Mean Value 

Uncertainty 
  πȢπππυ 

π Ȣππππυ 

     πȢππφυ
πȢπππφυ 

ρz ρπ  

 ρπ  

0Ȣπψ 
       πȢππψ 
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Figure 3. Sample power ratio in time. 

 For this numerical experiment, a simple PK model of a nuclear reactor is simulated with the initial ”, 
‗, , and ɤ as inputs and ὖ and precursor-related concentration as output, via Eq. 5ï6. The inverse 

problem is set up to solve for the PK parameters as output given the ὖ data as input using a neural 

network. The time-series of ὖ in time is used to provide sufficient degrees of freedom to generate the four 

PK parameters. Although there are four PK parameters, it is noted that the ὖ data are uniquely determined 

by three combinations, namely, ȟȟ and ‗. This implies that the inverse problem is ill-posed as all four 

parameters cannot be uniquely determined from the ὖ distribution without additional constraints.  

For the purposes of this report, the numerical experiment is subdivided into three cases: (1) a case 

where only two of the four PK parameters are varied, rendering the inverse problem well-posed, (2) a 

case where all four PK parameters are varied limiting the degree of inference and rendering the inverse 

problem ill -posed, and (3) a reduced form of the ill-posed case where three combinations of parameters 

are varied.  For all cases, 50,000 samples are generated and randomly partitioned into 90% training 

samples, 5% validation samples, and 5% testing samples. The results are evaluated by comparing the fit 

PK parameters against their true values. 

The experiment begins by evaluating the former case, formulated as a well-posed problem with 

perfect recoverability where the variables  and ‗ are fixed, while ” and ɤ are varied uniformly as 

described in Table 1.  From this trial, it is observed that both ” and ɤ are recovered perfectly, as shown in  

Figure 4. 

  



 

 8 

The experiment is then extended to the ill-posed case, representative of most realistic systems, where 

all four parameters are allowed to vary. However, the inverse problem only allows recoverability of, at 

most, three combinations of the parameters, resulting in the neural network applying additional 

assumptions/constraints such as minimization of error to arrive at one of infinite solutions. Figure 5 

displays a large bound of uncertainty from this effect that will only be reduced by changing the 

experiment (i.e., generating PK parameters with less than 10% uncertainty per Table 1). This is an 

example of bias introduced by the inference procedure specifically and artificially exaggerating the 

degree of relationship between the input and output variables (i.e., it artificially inflates the mutual 

information between the input and the neural network output). 

If three variables are used instead, namely , , and ‗, they are perfectly recoverable from ὖ without 

any bias from the inference procedure as shown in Figure 6. This denotes the limit of inference for the 

given inverse problem, after which the individual four PK parameters can only be determined with 

additional constraints imposed by the inference procedure (minimizing mean-squared error, L1 norm, 

regularization, etc.). 

  

(a) ” (b) ɤ 

Figure 4. Original vs. predicted parameters given original data in the well-posed case. 
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(a) ” (b)   

  

(c) ɤ (d) ‗ 

Figure 5. Original vs. predicted parameters given original data in the ill -posed case. 












































